NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
NMN supplement is a nutritional supplement, a metabolite naturally occurring in plants and animals, which mainly consists of the precursor of the coenzyme NAD+. NMN is a substance that can be supplemented to increase NAD+ levels. NAD+ is an important metabolic substance in cells and participates in various biological processes such as cellular energy metabolism and DNA repair. NMN supplementation is thought to increase NAD+ levels, improve metabolic disease, and delay aging.
Introduction Ginsenoside Rg3 is Panaxanediol type tetracyclic triterpenoid saponin monomer extracted from the root of Panax ginseng, which has a wide range of pharmacological effects including anti-tumor, neuroprotection, cardiovascular protection, anti-fatigue, anti-oxidation, hypoglycemia, and enhancement of immune function. This research unveils the potential value of ginsenoside Rg3 in targeting breast cancer stem cells (BCSCs) to treat breast cancer, one of the most common tumor worldwide with significant morbidity and mortality. Ginsenoside Rg3 as anticancer adjuvant Ginsenoside Rg3 can promote the apoptosis of tumor cells, and inhibit tumor growth, infiltration, invasion, metastasis and neovascularization. At the same time, it has the effect of reducing toxicity, increasing efficacy in the joint application with chemotherapeutic drugs, improving immunity of the organism, and reversing multi-drug resistance of tumor cells. Shenyi capsule, a new anticancer drug with ginsenoside Rg3 monomer as the main component, was approved by China FDA and marketed in 2003, which is mainly used in the adjuvant treatment of various tumors. About BCSCs Breast cancer stem cells (BCSCs) are a group of undifferentiated cells with strong ability of self-renewal and differentiation, which is the main reason for poor clinical outcomes and poor efficacy. BCSCs can clonally proliferate under serum-free three-dimensional culture conditions and form mammospheres. BCSCs have specific surface markers (CD44, CD24, CD133, OCT4 and SOX2) or enzymes (ALDH1). BCSCs function as potential drivers of breast cancer, which are resistant to conventional breast cancer clinical treatments such as radiotherapy, leading to breast cancer recurrence and metastasis. The suppressive effect of ginsenoside Rg3 in the progression of breast cancer Ginsenoside Rg3 exerts inhibitory effects on the viability and clonogenicity of breast cancer cells in a time- and dose-dependent manner. In addition, it suppresses mammosphere formation, as evidenced by the spheroid number and diameter. Furthermore, ginsenoside Rg3 reduces the expression of stem cell-related factors (c-Myc, Oct4, Sox2, and Lin28), and decreases the ALDH (+) subpopulation breast cancer cells. Ginsenoside Rg3 as an accelerator of MYC mRNA degradation Ginsenoside Rg3 depresses BCSCs mainly through downregulating the expression of MYC, one of the main cancer stem cell reprogramming factors with a pivotal role in tumor initiation. Its regulatory effect on MYC mRNA stability is chiefly achieved by promoting the microRNA let-7 cluster. Under normal conditions, the let7 family is expressed at low levels in cancer cells, resulting in stable MYC mRNA expression and high c-Myc expression. However, Rg3 treatment leads to the upregulation of let-7 cluster, impairment of MYC mRNA stability, downregulation of c-Myc expression and inhibition of breast cancer stem-like properties. Conclusion The traditional Chinese herbal monomer ginsenoside Rg3 has the potential to suppress breast cancer stem-like properties by destabilizing MYC mRNA at the post-transcriptional level, showing great promise as adjuvant for the treatment of breast cancer. Reference Ning JY, Zhang ZH, Zhang J, Liu YM, Li GC, Wang AM, Li Y, Shan X, Wang JH, Zhang X, Zhao Y. Ginsenoside Rg3 decreases breast cancer stem-like phenotypes through impairing MYC mRNA stability. Am J Cancer Res. 2024 Feb 15;14(2):601-615. PMID: 38455405; PMCID: PMC10915333. BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible for any claims, damages, losses, expenses, or costs whatsoever resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction Ginsenoside Rh2 nanoliposome formulation has been proved to effectively target and deliver drugs to the tumor site, with less side effects and higher treatment efficiency, holding great promise in the treatment of tumors including breast cancer. Dilemma of traditional tumor therapies The traditional tumor therapies (eg. surgery, radiation, and chemotherapy) carry the high risks of damaging normal tissues and incompletely eradicating the cancer. Strikingly, nanotechnology opens up novel opportunities for tumor treatment, which can enhance earlier diagnosis through in vitro assays, promote imaging capabilities for diagnosis and treatment monitoring, and improve therapeutic outcomes by refining targeting precision, augmenting localized drug efficacy as well as minimizing systemic toxicity. Limitations of conventional liposome formulations The conventional liposome formations encounter a lot of bottlenecks in improving the progress of tumor microenvironment, a vital complex ecosystem for cancer development and metastasis. In addition, these formulations face the trouble (eg. issues related to religion tradition and vegetarianism) brought by cholesterol, an ingredient of traditional liposomes. Moreover, there are disadvantages of complicated fabrication process, low targeting efficiency of ligand-modified liposomes as well as extended circulation time of liposomes caused by the utilization of polyethylene glycol. Merits of PTX-Rh2-Lipo PTX-Rh2-lipo, a potential nanomedicine, has an overtly smaller particle size and higher zeta potential when compared with PTX-C-Lipo. Both types of liposomes show analogous encapsulation and stabilization abilities, as manifested by similar polydispersity index, encapsulation efficiency, and loading efficiency. Different from conventional wooden liposomes, PTX-Rh2-Lipo has the merits of enhanced uptake in tumor-associated fibroblasts L929 and 4T1 breast cancer cells, high targeting and penetration capacity, cytotoxicity against L929 fibroblasts, normalization of the vessel network, and depletion of stromal collagen. Conclusion Rh2-lipo cannot kill 4T1 breast cancer cells alone, despite of its stronger penetration ability in the tumors. Yet, it can act as a delivery vehicle for paclitaxel (PTX) to enhance its antitumor properties. Specifically, in this novel Rh2-Lipo-based nano-carrier PTX-Rh2-lipo, ginsenoside Rh2 can not only serve as a multifunctional membrane material to stabilize the structure and prolong the blood circulation of liposomes, but also works as an active ingredient to synergically enhance the efficacy of anti-cancer drugs by remodeling tumor-associated microenvironment and stimulating the immune system. Reference [1] Alrushaid N, Khan FA, Al-Suhaimi EA, et al. Nanotechnology in Cancer Diagnosis and Treatment. Pharmaceutics. 2023; 15(3):1025. doi: 10.3390/pharmaceutics15031025 [2] Hong C, Liang J, Xia J, et al. One Stone Four Birds: A Novel Liposomal Delivery System Multi-functionalized with Ginsenoside Rh2 for Tumor Targeting Therapy. Nanomicro Lett. 2020;12(1):129. doi:10.1007/s40820-020-00472-8 [3] Hong C, Wang A, Xia J, et al. Ginsenoside Rh2-Based Multifunctional Liposomes for Advanced Breast Cancer Therapy. Int J Nanomedicine. 2024;19:2879-2888. doi:10.2147/IJN.S437733 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction The crucial parts of nicotinamide adenine dinucleotide (NAD+) and its metabolites in aging and neurodegeneration have been widely recognized. To spur progress toward biochemical research and interventions targeting aging and neurodegenerative diseases, it is of great significance to accurately quantify NAD+ and its metabolite levels in the NAD+ salvage pathway. Here, a robust and accurate LC-MS/MS method is applied to quantify NAD+ and its metabolites levels in normal and injured mouse sciatic nerve. Limitations of existing methods for quantifying NAD+ and its metabolites Traditional methods for quantifying NAD+ and its metabolites, such as HPLC-UV, NMR, capillary zone electrophoresis, or colorimetric enzymatic assays, face various challenges in sensitivity, selectivity, and indirect measurement. As for existing LC-MS/MS assays for cellular or tissue NAD+ and its metabolites measurements, there are still many difficulties to overcome, such as extended run times, poor chromatographic retention behavior, and unsatisfactory peak shapes. Moreover, only one to three substances in the NAD+ salvage pathway can be covered by these methods. The modifications of LC-MS/MS method On the basis of existing LC-MS/MS assays, the modifications regarding the chromatographic conditions, surrogate matrix and MS/MS conditions are conducted. Specifically, 5 μM of methylene phosphonic acid is employed as the mobile phase additive, which explicitly promotes the signal intensity and peak shape. Given the relatively clean and simple nature of never samples and their small size, ultrapure water is tested as a substitute matrix. Instead of hydrophilic interaction liquid chromatography column and hypercarb column, the Waters Atlantis Premier BEH C18 AX column is utilized, whose unique MaxPeak HPS high-performance surface technology (passivating the column inner wall, eliminating metal surface) enables the high reproducibility, peak symmetry, and baseline separation of all analytes. Besides, MS conditions are optimized to minimize the NAD+ interference signal in the cyclic adenosine diphosphate ribose (cADPR) channel while maintaining the response of cADPR and nicotinamide mononucleotide (NMN), with 4000V for ion spray voltage, 450℃ for turbo heater temperature, 50 psi for Gas 1, 50 psi for Gas 2, 30 psi for curtain gas, and 12 psi for collision gas. Representative chromatogram of nerve samples (normal vs injured) All five analytes achieve baseline separation, where cADPR is a sensitive biomarker in the neurodegeneration model. Herein, sciatic nerve axotomy induces axonal degeneration, leading to reduced NAD+ level and elevated NMN level in the injured nerves, resulting in about a 2-fold increase in the NMN/NAD+ ratio. Simultaneously, the levels of nicotinamide (NAM) and adenosine diphosphate ribose (ADPR), are decreased by about 2-fold, while cADPR level is increased by more than 8-fold. These results are consistent with those of previously reported research, verifying the accuracy of this modified LS-MS/MS method in quantifying NAD+ and its metabolites. Conclusion This modified LC-MS/MS method enables effective baseline separation of NAD+, NMN, NAM, ADPR, and cADPR within a brief runtime of 5 min, which is contributive to early diagnoses of various neurological disorders and drug development for aging and neurodegenerative diseases. Reference Ma Y, Deng L, Du Z. Development and validation of an LC-MS/MS method for quantifying NAD+ and related metabolites in mice sciatic nerves and its application to a nerve injury animal model. J Chromatogr A. doi:10.1016/j.chroma.2024.464821 BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN and NR). There are various types of NAD to be selected, encompassing NAD ER Grade (endoxin removal), NAD Grade I (IVD/dietary supplement/cosmetics raw powder), NAD Grade II (API/intermediates) and NAD Grade IV (if any higher requirement on the solubility), which can be provided in the form of lyophilized powder or crystalline powder. The purity of BONTAC NAD can reach above 98%. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses or costs resulting or arising directly or indirectly from your reliance on the information and material on this website.